Курсовая работа по дисциплине «Релейная защита и автоматика систем электроснабжения промышленных предприятий»



страница1/3
Дата28.04.2018
Размер1.21 Mb.
Название файлаbestreferat-190422.docx
ТипКурсовая
  1   2   3

Введение
Системы электроснабжения являются сложными производственными объектами кибернетического типа, все элементы которых участвуют в едином производственном процессе, основными особенностями которого являются быстротечность явлений и неизбежность повреждений аварийного характера. Поэтому надёжное и экономичное функционирование систем электроснабжения возможно только при автоматическом управлении ими.

Распределительные электрические сети являются важным звеном в системе производства, передачи и потребления электрической энергии. Большое значение для надёжной работы электросетей имеет правильное выполнение и настройка устройств релейной защиты и противоаварийной автоматики (РЗА) и в том числе правильный выбор рабочих параметров срабатывания (рабочих уставок) аппаратуры РЗА.

Курсовая работа по дисциплине «Релейная защита и автоматика систем электроснабжения промышленных предприятий» является одной из важнейших составных частей общего курса РЗА. В процессе выполнения данной работы выбираются защиты и рассчитываются уставки для цеховых (заводских) распределительных сетей, производится согласование защит для обеспечения надёжности, максимального быстродействия и селективности.
1. Выбор кабелей системы электроснабжения
1.1 Выбор кабеля W6', питающего трансформатор T5
На основе данных выбираем трансформатор Т5 типа ТСЗ-160/10 ([6], табл.3.3).

В нормальном режиме работы длительный ток нагрузки составит:


А.
Примем коэффициент загрузки трансформатора в режиме длительной нагрузки и ПАР равным 1, так как отсутствует резерв. Следовательно Iн=Iн.max=Iном.Т5=14.663 А.

Выбираем кабель на 6 кВ марки ААГ-3×10 для прокладки в канале (температура окружающей среды +350 С).

Iдоп.ном=42 А ([1], табл. 1.3.18).

Расчетный длительный ток кабеля:

Iдоп=Кс.н.·Кср·Iдоп.ном=1·0.85·42=35.7 А,

где: Кс.н=1 ([1], табл. 1.3.26); Кср=0.85 ([1], табл. 1.3.3).

Условие выполняется:

Iн.max=14.663 А < Iдоп=35.7 А.

Определим экономически целесообразное сечение:
мм2 > 10 мм2,
где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36 ).

Увеличиваем сечение кабеля до q=16 мм2.

Iдоп.ном=50 А ([1], табл. 1.3.18).

Расчетный длительный ток кабеля:

Iдоп=Кс.н.·Кср·Iдоп.ном=1·0.85·50=42.5 А,

где: Кс.н=1 ([1], табл. 1.3.26); Кср=0.85 ([1], табл. 1.3.3).

Условие выполняется:

Iн.max=24.06 А < Iдоп=42.5 А.



Допустимый ток термической стойкости кабеля для времени действия 0.1 с основной релейной защиты (МТО) на Q14 равен:
кА,
где: С=94 А·с2/мм2 – для кабелей с алюминиевыми однопроволочными жилами;

tс.з.=0.1 с – предполагаемое время действия основной релейной защиты;

to.Q=0.1 c – полное время отключения выключателя КЛЭП;

τа=0.01 с – постоянная времени апериодической составляющей тока КЗ.


1.2 Выбор кабеля линии W6
На основе данных выбираем трансформаторы Т3 и Т4 марки ТСЗ-160/10 ([6], табл.3.3).

В нормальном режиме работы, при коэффициенте загрузки трансформатора Т4 равном 0.7, а трансформатора Т5 – 1, ток нагрузки будет равен:


А.
Максимально возможный ток нагрузки (ток в ПАР) равен:
А.
Выбираем кабель на 6 кВ марки ААГ-3×10 для прокладки в канале (температура среды +350С).

А ([1], табл. 1.3.18).

Расчётный длительно допустимый ток кабеля:



А,

где: ([1], табл. 1.3.26); ([1], табл.1.3.3).

Условие не выполняется: Iн.max=35.191 А > Iдоп=33.201 А, следовательно выбираем кабель сечением 16 мм2.

А ([1], табл. 1.3.18).

Расчётный длительно допустимый ток кабеля:



А,

где: ([1], табл. 1.3.26); ([1], табл.1.3.3).

Условие выполняется:

Iн.max=35.191 А < Iдоп=39.525 А

Определим экономически целесообразное сечение:
мм2 < 16 мм2,

где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36).



Допустимый ток термической стойкости кабеля для предполагаемого времени действия 0.1 с основной релейной защиты (МТО) на Q14 равен:
кА.
1.3 Выбор кабеля линии W5, питающей трансформатор Т3
Кабель питает трансформатор мощностью 160 кВА. В нормальном режиме работы, при коэффициенте загрузки трансформатора Т3 равном 0.7, ток нагрузки будет равен:
А.
Максимально возможный ток нагрузки (ток в ПАР) равен:
А.
Выбираем кабель на 6 кВ марки ААГ-3×10 для прокладки в канале (температура среды +350С).

А ([1], табл. 1.3.18).

Расчётный длительно допустимый ток кабеля:



А,

где: ([1], табл. 1.3.26); ([1], табл.1.3.3).

Условие выполняется:

Iн.max=20.528 А < Iдоп=33.201 А.

Определим экономически целесообразное сечение:
мм2 < 10 мм2,
где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36).

Допустимый ток термической стойкости кабеля для предполагаемого времени действия 0.1 с основной релейной защиты (МТО ) на Q13 равен:


кА.
1.4 Выбор кабелей, питающих асинхронные двигатели (АД) М1 и М2, М3 и М4
Номинальный ток АД серии АТД исполнения 2АЗМ1-800/6000УХЛ4 ([6], табл. 4.6):
А,
где: кВт – номинальная активная мощность АД ([6], табл. 4.6);

кВ – номинальное напряжение АД ([6], табл. 4.6);

– коэффициент мощности ([6], табл. 4.6);

– номинальный коэффициент полезного действия АД ([6], табл. 4.6).

Выбираем кабель на 6 кВ марки ААГ-3×70 для прокладки в канале (температура среды +350 С).



А ([1], табл.1.3.18).

Расчётный длительно допустимый ток кабеля:


А.
Условие выполняется: Iном.М=89.283 А < Iдоп=114.75 А.

Определяем экономически целесообразное сечение:


мм2 < 70 мм2.
При использовании кабеля со сплошными жилами допустимый ток термической стойкости для предполагаемого времени действия 0.1 с основной релейной защиты (МТО) равен:
кА.
1.5 Выбор кабелей линий W3 и W4
Линия питает трансформатор Т3 мощностью 160 кВА и АД М3 мощностью 800 кВт. В нормальном режиме работы ток в линии равен:
Iн.W3=Iн.W5+Iном.М3=24.927+89.283=114.21 А.
Максимально возможный ток нагрузки (ток в ПАР) равен:
Iн.max=2·Iн.W3+Iн.W6'=2·114.21+14.663= 243.083 А.
Определяем допустимый ток кабеля :
А,
где: Кп=1.35, принимая коэффициент загрузки линии в нормальном режиме Кз=0.6 и время ликвидации аварии равным 3 ч ([1], табл.1.3.2);

Кс.н.=0.93, принимая прокладку кабелей к РП в одной траншее (земле), лежащих рядом на расстоянии 300 мм ([1], табл.1.3.26);

Кср=1.0, для нормальной температуры среды (+150 С) ([1], табл.1.3.3).

Выбираем кабель на 6 кВ марки ААШв-3×95 для прокладки в земле (температура среды +150 С).



А ([1], табл. 1.3.16).

Условие выполняется:

Iдоп.ном =225 А > Iдоп=193.6 А.

Определим экономически целесообразное сечение:


мм2 < 95 мм2,
где: Jэ=1.4 (А/мм2) для Tmax=4000 ч ([1], табл. 1.3.36).

Допустимый ток термической стойкости кабеля для предполагаемого времени действия 1.2 с основной релейной защиты (МТЗ) на Q3 равен:


кА.
1.6 Выбор сечения провода воздушной линии питающей РУ
Питание РУ осуществляется по двум ВЛЭП длиной 0.75 км. В свою очередь РУ питает 2 трансформатора ТM-6300/10. Номинальный ток трансформатора равен:
А.
Максимально возможный ток (ток в ПАР) равен:
Iн.max=2·Iном.Т=2·364=728 А.
Выбираем провод марки АС сечением 330 мм2 – Iдоп=730 А ([1], табл. 1.3.29).
2. Предварительный расчет токов КЗ
Исходная схема электроснабжения и схема замещения для расчёта токов КЗ представлены на рис. 2 и рис. 3 соответственно.

Выбранные кабели проверим на термическую стойкость при КЗ (для одиночных кабелей при КЗ в начале кабеля или при КЗ за пучком кабелей при их параллельном соединении). Расчет токов проведем для 3х точек: К-1, К-2 и К-3. Расчёт токов КЗ производится в именованных единицах.



2.1 Определение сопротивления элементов схемы замещения, приведённые к напряжению Uб = 6.3 кВ
1) Сопротивление системы:
Ом,

где: кВ - среднее напряжение на котором находится система.



2) Сопротивление воздушной линии 10 кВ:
Ом,
где: Ом/км - удельное сопротивление линии.

3) Сопротивление трансформаторов Т1 и Т2 ТM-6300/10:


Ом.
4) Активное и реактивное сопротивления кабельных линий W3 и W4:
Ом;

Ом,
где: xуд, rуд - удельные сопротивления кабеля ([5], табл. 3.5).

5) Сопротивление асинхронных двигателей М1, М2, M3 и М4 (Рном.М1 =800 кВт) при номинальной нагрузке:


Ом.
6) Активное и реактивное сопротивления линии W5:
Ом;

Ом.
7) Активное и реактивное сопротивления линии W6:
Ом;

Ом.
2.2 Расчет тока КЗ в точке К-1
Суммарное сопротивление от энергосистемы до точки К-1 равно:
Ом.
Начальное значение периодической составляющей тока в месте КЗ со стороны системы:
кА.
Начальное значение периодической составляющей тока в месте КЗ со стороны асинхронных двигателей М1 и М2:
кА.
Определяем необходимость учета подпитки от АД:

,
что больше 2 и подпитка от АД учитывается.

Суммарное значение периодической составляющей тока в точке К-1 (в начале КЛЭП W3):


кА < кА.
Таким образом, кА < кА.

Вывод: Для обеспечения прохождения периодической составляющей тока КЗ в точке КЗ К-1 кабель сечением 95 мм2 подходит.


2.3 Расчет тока КЗ в точке К-2
Результирующее сопротивление со стороны энергосистемы для точки К-2:
Ом.
Токи трёхфазного КЗ на шинах РП со стороны энергосистемы и двигателей при включенном секционном выключателе QB2:
кА;

кА.

Определяем необходимость учета подпитки от АД:


,
что больше 2 и подпитка от АД учитывается.

Суммарное значение периодической составляющей тока в точке К-2 (в начале КЛЭП W5 и W6):


кА > кА.
Ток термической стойкости кабеля W6 равен IтерW6=3.282 кА, а кабеля W5 – IтерW5=2.051. Следовательно сечение этих кабелей увеличим до q=35 мм2, тогда:
кА.
Заново считаем:
Ом;

Ом,
где – новые удельные сопротивления кабелей ([5], табл. 3.5).

Таким образом, кА < кА.



Вывод: Для обеспечения прохождения периодической составляющей тока КЗ в точке КЗ К-2 сечение кабелей W5 и W6 мы вынуждены увеличить до 35 мм2.
2.4 Расчет тока КЗ в точке К-3
Результирующее сопротивление со стороны энергосистемы для точки К-3:
Ом
Начальное значение периодической составляющей тока в месте КЗ:
кА > кА.
Увеличиваем сечение кабеля отходящего от РП: мм2, тогда:
кА.
Заново считаем:
Ом;

Ом,
где – новые удельные сопротивления кабеля ([5], табл. 3.5).

Таким образом кА < кА.

3. Уточненный расчет токов КЗ
Исходная схема распределительной сети представлена на рис. 4.

В дальнейшем на всех схемах замещения, начиная со схемы на рис. 4, в скобках указаны сопротивления элементов схемы в именованных единицах в минимальном режиме для определения минимальных значений токов КЗ, а без скобок - в максимальном режиме.



3.1 Расчет тока КЗ в точке К-1
1) Рассчитаем реактивные сопротивления силового трансформатора ГПП с учётом работы устройства РПН.

Напряжения, соответствующие крайним ответвлениям:


кВ;

кВ,
где: ΔUрпн=10 % – ступень регулирования трансформатора ([13] табл. П1.2).

Сопротивления трансформаторов в максимальном и минимальном режимах:


Ом;

Ом,
где: Uk%T1max=6.9 – максимальное сопротивление короткого замыкания трансформатора ([13] табл. П1.2);

Uk%T1min=6.2 – минимальное сопротивление короткого замыкания трансформатора ([13] табл. П1.2).



Определим наименьшее и наибольшее сопротивления трансформатора, отнесенные к стороне 6.3 кВ:
Ом

Ом
2) Результирующее сопротивление от системы до точки К-1 максимальном и минимальном режимах:
Ом;

Ом.
3) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-1:
кА;

кА.
4) Минимальный ток двухфазного КЗ в точке К-1:
кА.
3.2 Расчет тока КЗ в точке К-2
1) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-2:
кА;

кА.
2) Минимальный ток двухфазного КЗ в точке К-2:
кА.
3.3 Расчет тока КЗ в точке К-3
1) Результирующее сопротивление от системы до точки К-3 максимальном и минимальном режимах:

Ом;



Ом.

2) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-3:
кА;

кА.
3) Минимальный ток двухфазного КЗ в точке К-3:
кА.
3.4 Расчет тока КЗ в точке К-4
1) Результирующее сопротивление от системы до точки К-4 максимальном и минимальном режимах:



2) Максимальное и минимальное значения тока при металлическом трёхфазном КЗ в точке К-4:
кА;

кА.
3.5 Расчет тока КЗ в точке К-5
1) Расчет результирующего сопротивления от системы до точки К-5 в максимальном режиме. Определим полное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Активное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Индуктивное сопротивление трансформатора Т3, приведенное к стороне ВН:
Ом.
Результирующее полное сопротивление от системы до точки К-5 в максимальном режиме:

2) Максимальное значение тока при металлическом трёхфазном КЗ в точке К-5 приведенное к стороне ВН (Uвн=6.3 кВ):
кА.
Максимальное значение тока при металлическом трёхфазном КЗ в точке К-5 приведенное к стороне НН (Uнн=0.4 кВ):
кА.
3) Определим суммарное полное сопротивление цепи КЗ, приведенное к стороне НН:

Суммарное активное сопротивление цепи КЗ, приведенное к стороне НН:


мОм,
где: мОм – активное сопротивление от системы до цехового трансформатора отнесенное к стороне НН;

Ом – активное сопротивление от системы до цехового трансформатора отнесенное к стороне ВН;

мОм – активное сопротивление цехового трансформатора, приведенное к стороне НН;

мОм – активное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);

гкв=0.65 мОм – активное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4);

rк=1 мОм – активное сопротивление контактов коммутационных аппаратов цепи КЗ;

rп=15 мОм – активное переходное сопротивление дуги в разделке кабеля, отходящего от секции шин 0.4 кВ ([12] табл. П2.2).



Суммарное индуктивное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне НН;

мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне ВН;

мОм – индуктивное сопротивление цехового трансформатора, приведенное к стороне НН;

мОм – индуктивное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);

xкв=0.17 мОм – индуктивное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4).



4) Минимальное значение тока трехфазного КЗ вблизи секции шин 0.4 кВ с учетом активного сопротивления дуги:
кА.
Минимальное значение тока трехфазного КЗ в точке К-5, отнесенное к стороне ВН:
кА.
3.6 Расчет тока КЗ в точке К-6
1) Расчет результирующего сопротивления от системы до точки К-6 в максимальном режиме. Определим полное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Активное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Индуктивное сопротивление трансформатора Т5, приведенное к стороне ВН:
Ом.
Результирующее полное сопротивление от системы до точки К-6 в максимальном режиме:

2) Максимальное значение тока при металлическом трёхфазном КЗ в точке К-6 приведенное к стороне ВН (Uвн=6.3 кВ):
кА.
Максимальное значение тока при металлическом трёхфазном КЗ в точке К-6 приведенное к стороне НН (Uнн=0.4 кВ):
кА.
3) Определим суммарное полное сопротивление цепи КЗ, приведенное к стороне НН:

Суммарное активное сопротивление цепи КЗ, приведенное к стороне НН:


мОм,
где: мОм – активное сопротивление от системы до цехового трансформатора отнесенное к стороне НН;

Ом – активное сопротивление от системы до цехового трансформатора отнесенное к стороне ВН;

мОм – активное сопротивление цехового трансформатора, приведенное к стороне НН;

мОм – активное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);

rкв=0.65 мОм – активное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4);

rк=1 мОм – активное сопротивление контактов коммутационных аппаратов цепи КЗ;

rп=15 мОм – активное переходное сопротивление дуги в разделке кабеля, отходящего от секции шин 0.4 кВ ([12] табл. П2.2).



Суммарное индуктивное сопротивление цепи КЗ, приведенное к стороне НН:
мОм,
где: мОм – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне НН;

Ом – индуктивное сопротивление от системы до цехового трансформатора в минимальном режиме приведенное к стороне ВН;

мОм – индуктивное сопротивление цехового трансформатора, приведенное к стороне НН;

мОм – индуктивное сопротивление шинопровода типа ШРА73 (250 А) от трансформатора до секции шин 0.4 кВ, протяженностью 10 м ([12] табл. П2.3);

xкв=0.17 мОм – индуктивное сопротивление токовых катушек и контактов автоматического выключателя QF3 с номинальным током 400 А (рис. 1) ([12] табл. 2.4).



4) Минимальное значение тока трехфазного КЗ вблизи секции шин 0.4 кВ с учетом активного сопротивления дуги:
кА.
Минимальное значение тока трехфазного КЗ в точке К-5, отнесенное к стороне ВН:


Поделитесь с Вашими друзьями:
  1   2   3


База данных защищена авторским правом ©coolnew.ru 2017
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Теоретические основы
Общая характеристика
Лабораторная работа
Методические указания
Теоретические аспекты
Дипломная работа
Федеральное государственное
Пояснительная записка
Рабочая программа
Методические рекомендации
История развития
Практическая работа
Общие сведения
Физическая культура
Теоретическая часть
государственное бюджетное
Основная часть
Выпускная квалификационная
Краткая характеристика
квалификационная работа
Современное состояние
Финансовое планирование
государственное образовательное
история возникновения
Практическое задание
Самостоятельная работа
теоретические основы
Направление подготовки
Российская академия
Теория государства
образовательное бюджетное
Правовое регулирование
бюджетное учреждение
Методическая разработка
Гражданское право
Учебное пособие
История возникновения
истории развития
Общая часть
основная часть
Экономическое содержание
Конституционное право
Уголовное право
Организационная структура
Производственная практика
Антикризисное управление
Политические партии
Название дисциплины
Организация производства