1 Позиционные и непозиционные


Законы, используемые при сложении и вычитании целых неотрицательных чисел.-



Скачать 144.23 Kb.
страница7/37
Дата09.01.2018
Размер144.23 Kb.
Название файлаответы математика.docx
1   2   3   4   5   6   7   8   9   10   ...   37
8. Законы, используемые при сложении и вычитании целых неотрицательных чисел.- На данном этапе проводим истолкование сложения и вычитания целых неотрицательных чисел, в соответствии с которым сложение связано с операцией объединения, вычитание - с операцией разбиения.

Деятельность учащихся сначала сводится к переводу предметных действий на язык математики, а затем к установлению соответствия между различными моделями (под картинкой, где дети выпускают рыбок в один аквариум на писано символическое выражение действия 2+3).

Можно условно выделить три вида ситуаций, связанных с операцией объединения: 1) увеличение данного предметного множества на несколько предметов; 2) увеличение на несколько предметов множества, равночисленного данному; 3) составление одного предметного множества из двух данных.

При формировании у детей представлений о вычитании можно условно ориентироваться на следующие предметные ситуации: 1) уменьшение данного предметного множества на несколько предметов; 2) уменьшение множества, равночисленного данному, на несколько предметов; 3) сравнение двух предметных множеств. [11,с.97]

В процессе выполнения предметных действий у младших школьников формируется представление о вычитании как о действии, которое связано с разбиением количества предметов.

На этом же этапе знакомим детей с числом нуль. Число нуль является характеристикой пустого множества, т.е. множества, не содержащего ни одного элемента. Для того, чтобы учащиеся представили себе такое множество, можно использовать следующие методические приёмы:

- установление соответствия между числовой фигурой и цифрой, обозначающей количество предметов. Этим подходом можно воспользоваться до изучения сложения и вычитания, на этапе формирования у учащихся представлений о количественном числе;

- знакомство учащихся с нулём как результатом вычитания. Для этой цели им предлагаются предметные ситуации, которые они сначала описывают, а затем записывают свой рассказ числовыми равенствами.

Число 0 следует рассмотреть как результат операций (2-2, 3-3 и др.). Можно предложить задания с формулировкой «Что изменилось?» и изображением количественной и пустой совокупностей предметов. Возможно познакомить детей с числом нуль как с компонентом арифметического действия, предложив задание с формулировкой «Что изменилось» и с двумя одинаковыми совокупностями предметов. 4=4, 4+0=4 и 4-0=4.

При формировании у детей представлений о смысле сложения полезно предлагать им такие ситуации для предметных действий, при выполнении которых они сами подмечают закономерность, связанные с переместительным свойством сложения. Например: «на одной тарелке 4 апельсина, на другой - 3»; «сколько апельсинов на обеих тарелках?»; «на одной тарелке 3 апельсина, на другой - 4»; «сколько апельсинов на обеих тарелках?».

В основе усвоения взаимосвязи между компонентами и результатами сложения и вычитания лежит осознание учащимися предметного смысла этих действий. При этом следует учитывать, что особую трудность для некоторых детей представляет вычленение и удаление части множества, т.е. осознание тех предметных действий, которые связаны со смыслом вычитания.

Рассмотрим некоторые методические приёмы, в которых учитываются особенности младших школьников:

1. Работая у доски с рисунками и дидактическими пособиями, полезно сначала предложить ученику показать предметные совокупности, с которыми он действует, а затем уже назвать число предметов в них;

2. Выполняя задания с рисунками, к которым дана запись вида -=, рекомендуется заполнять «окошки» не только в прямом порядке, но и начиная с любого;

3. Можно использовать задания такого же рода, но со срытыми количествами. При их выполнении внимание учащихся сосредотачивается на соотнесении элементов схемы и предметных совокупностей;

4. Можно предложить трём ученикам взять со стола карточки (например, всего 5), соответствующие выражению (например, 5-2=3);.

5. Можно предлагать комплексные задания с карточками и со схемами.

Разрешение таких «противоречий» в игровой форме помогает детям усвоить взаимосвязь между компонентами и результатами действий сложения и вычитания. Однако, осознавая «предметную» взаимосвязь компонентов и результатов действий, не все дети могут описать её, пользуясь математической терминологией: слагаемые, значение суммы, уменьшаемое, вычитаемое, значение разности. В этом случае целесообразно использовать понятия целого и части и соотношение между ними (часть всегда меньше целого; если убрать одну часть, то останется другая).

Понятие целого и части позволяет как бы «материализовать» такие термины, как слагаемые, уменьшаемое, вычитаемое (например, устанавливая соответствие между рисунком и математической записью).

Формирование вычислительных умений и навыков - одна из основных задач начального курса математики. Вычислительное умение - это развёрнутое осуществление действия, в котором каждая операция осознаётся и контролируется. В отличие от умения навыки характеризуются свёрнутым, в значительной мере автоматизированным выполнением действия, с пропуском промежуточных операций, когда контроль переносится на конечный результат.

В начальном курсе математики учащиеся должны усвоить на уровне навыка: таблицу сложения (вычитания) в пределах 10; таблицу сложения однозначных чисел с переходом через разряд и соответствующие случаи вычитания; таблицу умножения и соответствующие случаи деления.

Подход к формированию навыков сложения и вычитания в пределах 10 предполагает осознанное составление таблиц и их непроизвольное или произвольное запоминания в процессе специально организованной деятельности. Осознанное составление таблиц может обеспечиваться теоретической линией курса, предметными действиями, методическими приёмами и наглядными средствами. Для произвольного и непроизвольного запоминания таблиц используется специальная система упражнений.

Таблицы сложения и вычитания в пределах 10 можно условно разделить на четыре группы, каждая из которых связана с теоретическим обоснованием и соответствующим способом действия: 1) принцип построения натурального ряда чисел - присчитывание и отсчитывание по 1; 2) смысл сложения и вычитания - присчитывание и отсчитывание по частям; 3) переместительное свойство сложения - перестановка слагаемых; 4) взаимосвязь сложения и вычитания - правило: если из значения суммы вычесть одно слагаемое, то получим другое слагаемое.

Составление таблиц 1) группы не вызывает затруднения. При формировании вычислительных навыков для случаев сложения и вычитания, представленных во 2), 3), 4) группах, работа организуется в соответствии с определенными этапами: 1 - подготовка к знакомству с вычислительным приёмом; 2 - ознакомление с вычислительным приёмом; 3 - составление таблиц с помощью вычислительных приёмов; 4 - установка на запоминание таблиц; 5 - закрепление таблиц в процессе тренировочных упражнений.

В формировании вычислительных навыков в школьной практике используются различные подходы: а) выучивание таблиц; б) знакомство с различными вычислительными приёмами a составление таблиц a непроизвольное запоминание в процессе выполнения упражнений; в) после использования предметных действий и вычислительных приёмов, ученику даётся установка на запоминание. [15,с.44]

В отличие от традиционной системы внетабличное сложение и вычитание строится не на последовательном рассмотрении частных случаев этих действий, а на выделении и осознании основных положений, лежащих в фундаменте алгоритма их выполнения: поразрядности выполнения каждой из этих операций и использования таблицы сложения для вычислений в каждом разряде. Такой подход позволяет уже на этапе выполнения действий с двузначными числами сформировать общее понятие об алгоритме выполнения сложения и вычитания и в дальнейшем использовать его на любом множестве натуральных чисел, не занимая значительного учебного времени на рассмотрение и изучение этих частных случаев.


Необходимо иметь в виду, что мы принципиально стоим на позиции формирования общего понятия о выполнении операций на базе небольших чисел, с которыми детям сравнительно легко работать, операции с которыми без значительной затраты сил и времени они могут выполнить практически, проверив правильность выдвинутых предположений на легко обозримом материале. В этом случае у формируемого понятия есть прочная база личного практического опыта, что не мешает достижению высокого уровня обобщения, а, наоборот, способствует его достижению.





  1. Поделитесь с Вашими друзьями:
1   2   3   4   5   6   7   8   9   10   ...   37


База данных защищена авторским правом ©coolnew.ru 2017
обратиться к администрации

    Главная страница
Контрольная работа
Курсовая работа
Теоретические основы
Общая характеристика
Лабораторная работа
Теоретические аспекты
Методические указания
Дипломная работа
Рабочая программа
Пояснительная записка
Федеральное государственное
Методические рекомендации
Физическая культура
Практическая работа
Теоретическая часть
Краткая характеристика
Общие сведения
Выпускная квалификационная
История развития
квалификационная работа
Основная часть
теоретические основы
государственное бюджетное
Практическое задание
Современное состояние
история возникновения
Правовое регулирование
Самостоятельная работа
Направление подготовки
Гражданское право
Теория государства
Финансовое планирование
Уголовное право
Учебное пособие
Методическая разработка
История возникновения
истории развития
Организационная структура
основная часть
государственное образовательное
Российская академия
Организация производства
концепции личности
Антикризисное управление
прохождении производственной
Название дисциплины
Политические партии
Совершенствование маркетинговой
Административное право
Фамилия студента
Общая часть